

TES PROGRAM STATUS

Reinhard Beer, Annmarie Eldering & the TES team

Jet Propulsion Laboratory
Atmospheric & Environmental Research Inc.
Harvard University
Oxford University
NASA Langley R.C.

AURA Science Team Meeting, PASADENA, CA Oct 1-5 2007

The TES Experiment

Global measurements of tropospheric ozone and its precursors from TES combined with *in-situ* data and model predictions will address the following key questions:

How is the increasing ozone abundance in the troposphere affecting

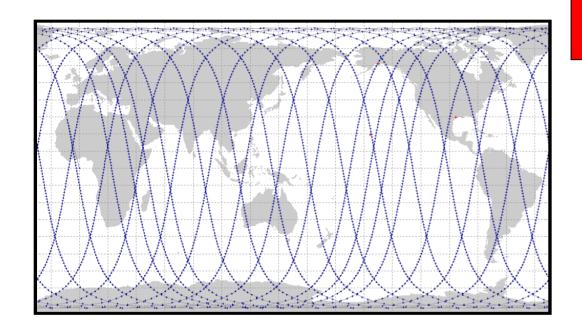
- air quality on a global scale?
- oxidizing reactions that "cleanse" the atmosphere?
- climate change?

TES Operating Modes

Global Survey: 16 orbits of nadir & limb observations repeated every other day. This is the source of Standard Products.

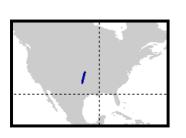
Stare: Point at a specific latitude & longitude for up to ~4 minutes.

Transect: Point at a set of contiguous latitudes & longitudes to cover ~450 km.

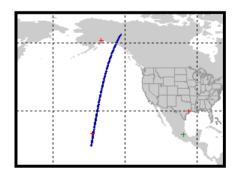

Step-&-Stare: Point at nadir for 4 seconds (5.2 seconds with necessary reset). Spacecraft has moved ~40 km. Point at nadir again. Repeat indefinitely.

Limb Drag: Point at the trailing limb (16 second scans). Repeat indefinitely.

These last 4 modes constitute Special Products that are obtained *only* when no Global Survey is scheduled.



Examples of TES nadir coverage



Global Survey footprints
180 km apart
Every 2 days... 312 and counting

Step/Stare footprints
45 km apart
Special observation

Transect footprints
Contiguous!
Special observation

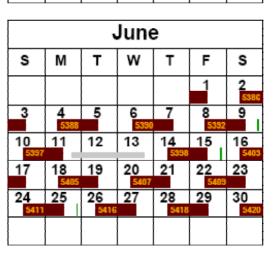
Project Highlights

01-08-07	Release 10 Operational at SIPS
01-15-07	Begin Release 10 Nadir reprocessing
01-24-07	Fifteenth Detector de-ice Jan. 24-26, 2007
01-29-07	Begin seven week SO collection in Sweden to support of SAUNA ozone validation campaign
04-19-07	Initial release of Level 3 PGE delivered to SIPS
04-28-07	Begin Release 10 Limb reprocessing
04-22-07	Begin ten week SO collection of US-Mexico Border to observe pollution events
06-11-07	Sixteenth Detector de-ice June 11-13, 2007
07-01-07	Begin nine week SO collection of Beijing to study pollution outflow
07-04-07	Begin seven week SO collection of North America to measure summertime pollution and support WAVES_2007
07-15-07	Begin four week SO collection of SO's supporting TC-4 in Costa Rica
07-27-07	Delivered Level 2 PGE point build supporting SCF full filter processing
08-04-07	Filter Wheel Anomaly

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Tropospheric Emission Spectrometer

TES Science Observations and Level 2 Products January through June 2007

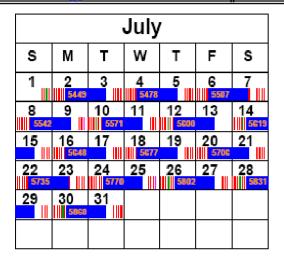

January								
s	М	Т	w	Т	F	s		
	1 5180	2	3 5182	4	5 5184	6		
7 5186	8	9 5188	10	11 5190	12	13 5192		
14	15 5194	16	17 5196	18	19 5198	20		
21 5200	22	23 5202	24	25	26	27 5204		
28	29 5203	30	31 5211					
		_						

February								
s	М	Т	W	Т	F	s		
				1	2 5213	3		
4	5	6 5218	7	8 5220	9	10 5225		
11	12 5230	13	14	15	16 5240	17		
18 5242	19	20 5244	21	22 5246	23	24 5248		
25	26 5253	27	28					

March							
s	М	Т	W	Т	F	S	
				1	2 5263	3	
4	5	6	7	8	9	10	
5268		5270		5272		5274	
11	12	13	14	15	16	17	
	5276		5281		5286		
18	19	20	21	22	23	24	
5291		5293		5295		5297	
25	26	27	28	29	30	31	
	5299		5301		5303		

April								
S	М	M T W T F						
1 5305	2	3 5307	4	5 5309	6	7 5311		
8	9 5313	10	11 5315	12	13 5317	14		
15 5319	16	17 5321	18	19 5828	20	21 5326		
22	23 5331	24	25 5333	26	27 5335	28		
29 5340	30							

May								
S	М	Т	W	Т	F	S		
		1 5342	2	3 5344	4	5 5346		
6	7 5348	8	9 5353	10	11 5355	12		
13 5857	14	15 5362	16	17 5364	18	19 5866		
20	21	22	23 5370	24	25 5375	26		
27 5377	28	29 5379	30	31 5384				


Available Global Surveys: Dull Red = GS (V003, R10) Faded Green = GS (V002, R9.3)

Available Special Observations: Red = Step&Stare Green = Transect Magenta = Stare Violet = Limb

Dark Gray = L2 Product Not Available Orange = RunID for Global Survey Light Gray = Focal Plane De-Ice

TES Science Observations and Level 2 Products July through December 2007

	August									
s	М	T	W	Т	F	s				
			5883	2	3 5518	4				
5	6	7 5948	8	9	10	11				
12	13	14	15 6073	16	17	18				
19 6131	20	21	22	23	24	25 522				
26	27	28	29	30	31					

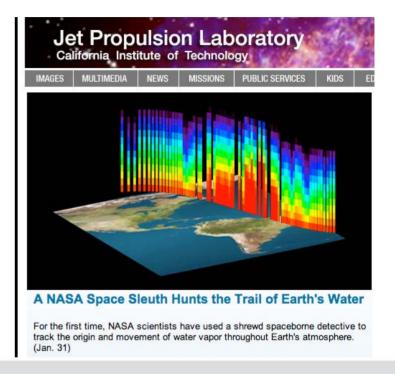
September									
S	М	T	W	Т	F	s			
						1			
2 6313	3	4 6315	5	6 6317	7	8 6319			
9	10	11	12	13	14	15			
16	17	18	19	20	21	22			
23	24 6344	25	26 6346	27	28	29			
30 6350		·		·					

October										
s	М	M T W T F S								
	1	2	3	4	5	6				
7	8	9	10	11	12	13				
14	15	16	17	18	19	20				
21	22	23	24	25	26	27				
28	29	30	31							

November										
s	M T W T F S									
				1	2	3				
4	5	6	7	8	9	10				
11	12	13	14	15	16	17				
18	19	20	21	22	23	24				
25	26	27	28	29	30					

December											
S	М	T	W	Т	F	S					
						1					
2	3	4	5	6	7	8					
9	10	11	12	13	14	15					
16	17	18	19	20	21	22					
23	24	25	26	27	28	29					
30	31										

All UTC Time: Blue = Global Survey Red = Step&Stare Green = Transect Magenta = Stare Violet = Limb
Orange = RunID for Global Survey Gray = Focal Plane De-Ice


Instrument Highlights

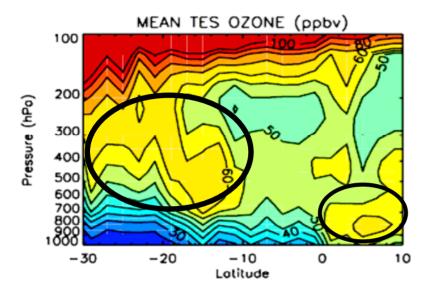
- All subsystems continue to operate nominally
- TES completed three years of on-orbit operations July 15, 2007
- ICS average motor current during Global Surveys continues a gradual upward trend
- ICS Action Plan remains unchanged
 - If ICS mean/peak current becomes unacceptable (value under analysis) or ICS mechanism stalls:
 - 1) Warm motor/encoder to 25°C, execute several long scans, cool and continue
 - 2) Increase coarse motor voltage setting
- A Filter Wheel Anomaly occurred on August 4, 2007 Instrument Operations resumed within 48 hours
- Summary of ICS Electronics and Fault Management Study
 - ICS Motor and Electronics both capable of running at high current without damage
 - ICS motor overcurrent monitoring has conversion limitation
 - A plan is underway to modify the Fault Threshold Table to enable the Flight software to correctly measure ICS overcurrents greater than 2.1 amps

Water Vapor Cycle

- Measuring the ratio of water and heavy water (HDO) tells about the evaporation processes in the atmosphere.
- We learn about the intensity of the hydrological cycle, or evaporation and condensation processes.
- Nature paper by J. Worden, D,
 Noone, K. Bowman et al. (2/2007),
 JPL press release

nature

Vol 445 1 February 2007 doi:10.1038/nature05508


LETTERS

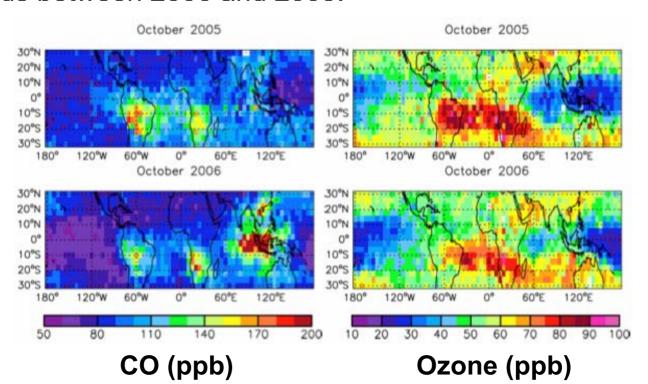
Importance of rain evaporation and continental convection in the tropical water cycle

John Worden¹, David Noone², Kevin Bowman¹ & the Tropospheric Emission Spectrometer science team and data contributors*

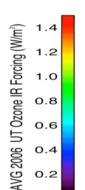
TES observes elevated lower tropospheric ozone

Problem: Understanding the distribution of tropospheric ozone, and controlling processes.

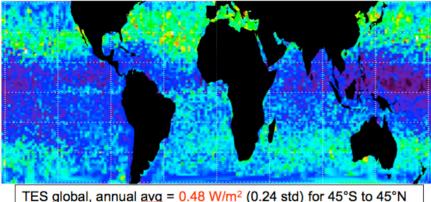
Result: TES observations show high concentrations of *upper* tropospheric ozone south of the ITCZ, and high concentrations of *lower* tropospheric ozone north of the ITCZ.


Significance: First space-borne measurement to differentiate ozone layers of the troposphere. These observations are being used to improve estimates of the impact of biomass burning on tropospheric ozone.

(L. Jourdain et al. GRL, 2007)


ENSO effects on trop composition

- Jennifer Logan et al, The effects of the 2006 El Niño on tropospheric composition as revealed by data from the Tropospheric Emission Spectrometer (TES)
- Fire emissions, associated with low rainfall, and dynamical impacts of the El Nino created marked differences in CO and O3 fields between 2006 and 2005.

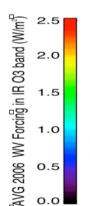

TES observations of IR radiative forcing

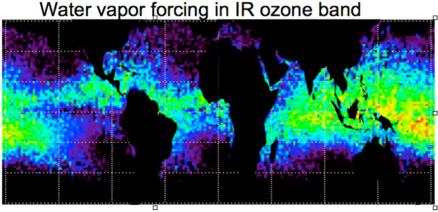
IR forcing from upper tropospheric ozone

IPCC (2007) value = 0.35 W/m^2 (range = 0.25 - 0.65)

for anthropogenic tropospheric ozone

Result: TES observations used to quantify the observed IR forcing of tropospheric ozone and water vapor in the ozone band.

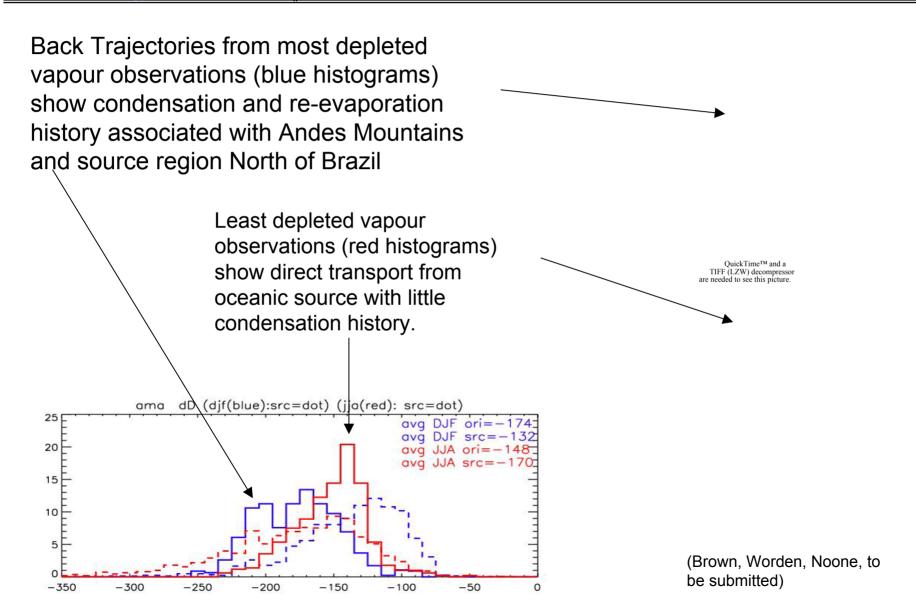

Problem: Radiative forcing of


and uncertain in the future.

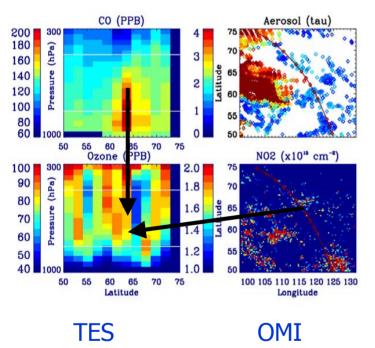
tropospheric ozone is modeled, but

not measured. Tropospheric ozone

is important in total radiative budget



Significance: First space-borne measurement of tropospheric ozone forcing. TES observations are in the range of model forecasts, but show more sensitivity of IR forcing in the Northern Hemisphere than models.


Amazon Rainy Season Water Budget

Enhanced and Depleted Ozone in Boreal Fire Plume

Case (a) TES O₃/CO 24th July 2006

Ozone production in Fire smoke plumes is highly variable

Case (b) TES O₃/CO 24th July 2006

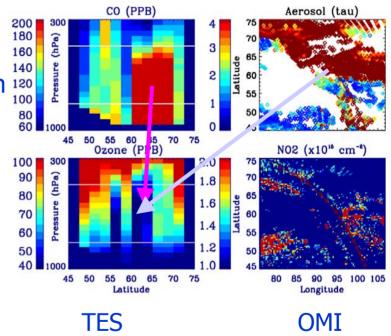
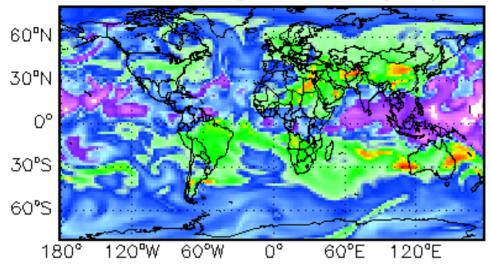
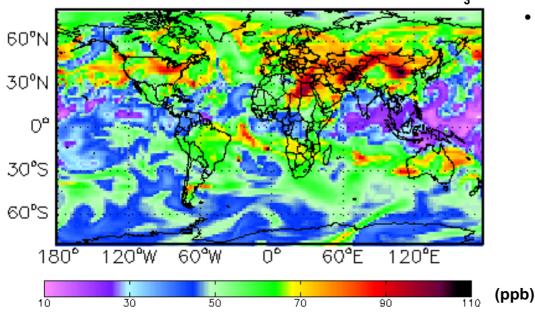



Figure: Ozone and CO as observed by TES; Aerosol optical depth, and NO2 tropospheric column amounts as observed by OMI for Siberian Boreal fires are depicted in the above Figures Figure (a) shows enhanced ozone, CO and NO2 in a relatively fresh part of the smoke plume and Figure (b) shows reduced ozone, despite of presence of CO, and NO2 under similar conditions but in the presence of optically thick aerosol amounts.

Aerosols have a significant impact on the ozone photochemistry in the boreal fires.

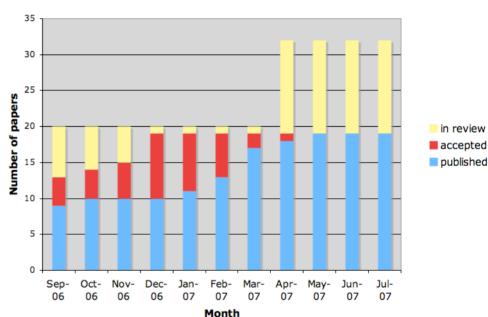

Verma et al, in prep

Assessing the response of the dynamics in AM2-Chem to the assimilation of TES O₃

AM2-Chem at 5 km after assimilation of TES O₃

Approach

- Assimilate TES O₃ in AM2-Chem
- Impose optimized O₃ fields in the radiation calculation in the free running GCM to examine response of dynamics to the O₃ heating


D. Jones, et al., in prep

Ongoing Collaborations & Pubs

- Brad Pierce (NOAA-NESDIS)
- Jay Al-Assadi (NASA Langley)
- Dylan Jones (Univ. Toronto)
- David Noone (Univ. Colorado)
- Larry Horowitz (GFDL)
- Mary Barth (NCAR)
- Helen Worden (NCAR)
- Ken Pickering (Goddard)
- Qinbin Li (JPL)
- EPA Region 9
- Nigel Richards (Univ. Leicester)
- Jenny Moody (Univ. Virginia)
- Henry Fuelberg (Florida State)
- Adrian Sandu (Virginia Tech)
- Kelly Chance & Xiong Liu (SAO)
- Texas Commission on Environmental Quality (TCEQ)

- Harvard crowd
- MLS team
- Jae Kim